Search results
Results from the WOW.Com Content Network
In the case of negative real numbers, the largest real part is shared by the two nonreal cube roots, and the principal cube root is the one with positive imaginary part. So, for negative real numbers, the real cube root is not the principal cube root. For positive real numbers, the principal cube root is the real cube root.
A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:
In the case of three real roots, the square root expression is an imaginary number; here any real root is expressed by defining the first cube root to be any specific complex cube root of the complex radicand, and by defining the second cube root to be the complex conjugate of the first one.
Here is an angle in the unit circle; taking 1 / 3 of that angle corresponds to taking a cube root of a complex number; adding −k 2 π / 3 for k = 1, 2 finds the other cube roots; and multiplying the cosines of these resulting angles by corrects for scale.
A real number is a constructible number if there is a method to construct a line segment of length using a compass and straightedge, beginning with a fixed line segment of length 1. Each positive integer, and each positive rational number, is constructible. The positive square root of 2 is constructible.
Adjoining the real cube root of 2 to the rational numbers gives the cubic field (). This is an example of a pure cubic field, and hence of a complex cubic field. In fact, of all pure cubic fields, it has the smallest discriminant (in absolute value), namely −108. [2]
The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers, and the square root symbol refers to the principal square root, the one with a positive imaginary part. For the definition of the ...
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.