enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Brownian_motion

    X is a Brownian motion with respect to P, i.e., the law of X with respect to P is the same as the law of an n-dimensional Brownian motion, i.e., the push-forward measure X ∗ (P) is classical Wiener measure on C 0 ([0, ∞); R n). both X is a martingale with respect to P (and its own natural filtration); and

  3. Brownian motor - Wikipedia

    en.wikipedia.org/wiki/Brownian_motor

    The term “Brownian motor” was originally invented by Swiss theoretical physicist Peter Hänggi in 1995. [3] The Brownian motor, like the phenomenon of Brownian motion that underpinned its underlying theory, was also named after 19th century Scottish botanist Robert Brown, who, while looking through a microscope at pollen of the plant Clarkia pulchella immersed in water, famously described ...

  4. Brownian dynamics - Wikipedia

    en.wikipedia.org/wiki/Brownian_dynamics

    In Brownian dynamics, the following equation of motion is used to describe the dynamics of a stochastic system with coordinates = (): [1] [2] [3] ˙ = + (). where: ˙ is the velocity, the dot being a time derivative

  5. Wiener process - Wikipedia

    en.wikipedia.org/wiki/Wiener_process

    A single realization of a one-dimensional Wiener process A single realization of a three-dimensional Wiener process. In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. [1]

  6. Über die von der molekularkinetischen Theorie der Wärme ...

    en.wikipedia.org/wiki/Über_die_von_der...

    He found that the floating grains were moving about erratically; a phenomenon that became known as "Brownian motion". This was thought to be caused by water molecules knocking the grains about. In 1905, Albert Einstein proved the reality of these molecules and their motions by producing the first statistical physics analysis of Brownian motion.

  7. Ornstein–Uhlenbeck process - Wikipedia

    en.wikipedia.org/wiki/Ornstein–Uhlenbeck_process

    A Brownian motion model implies that the phenotype can move without limit, whereas for most phenotypes natural selection imposes a cost for moving too far in either direction. A meta-analysis of 250 fossil phenotype time-series showed that an Ornstein–Uhlenbeck model was the best fit for 115 (46%) of the examined time series, supporting ...

  8. Rotational Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Rotational_Brownian_motion

    Rotational Brownian motion is the random change in the orientation of a polar molecule due to collisions with other molecules. It is an important element of theories of dielectric materials. The polarization of a dielectric material is a competition between torques due to the imposed electric field , which tend to align the molecules, and ...

  9. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    Two famous classes of Markov process are the Markov chain and Brownian motion. Note that there is a subtle, often overlooked and very important point that is often missed in the plain English statement of the definition. Namely that the statespace of the process is constant through time. The conditional description involves a fixed "bandwidth".