enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enthalpy of vaporization - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_vaporization

    Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.

  3. Shimansky equation - Wikipedia

    en.wikipedia.org/wiki/Shimansky_equation

    The Shimansky equation describes quite well the heat of vaporization for a wide variety of liquids. For chemical compounds that belong to the same class (e.g. alcohols) the value of ⁠ ⁠ ratio remains constant. For each such class of liquids, the Shimansky equation can be re-written in a form of

  4. Ebullioscopic constant - Wikipedia

    en.wikipedia.org/wiki/Ebullioscopic_constant

    A formula to compute the ebullioscopic constant is: [2] = R is the ideal gas constant. M is the molar mass of the solvent. T b is boiling point of the pure solvent in kelvin. ΔH vap is the molar enthalpy of vaporization of the solvent.

  5. Latent heat - Wikipedia

    en.wikipedia.org/wiki/Latent_heat

    Latent heat can be understood as hidden energy which is supplied or extracted to change the state of a substance without changing its temperature or pressure. This includes the latent heat of fusion (solid to liquid), the latent heat of vaporization (liquid to gas) and the latent heat of sublimation (solid to gas). [1] [2]

  6. Properties of water - Wikipedia

    en.wikipedia.org/wiki/Properties_of_water

    Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...

  7. Antoine equation - Wikipedia

    en.wikipedia.org/wiki/Antoine_equation

    The August equation describes a linear relation between the logarithm of the pressure and the reciprocal temp. This assumes a temperature-independent heat of vaporization. The Antoine equation allows an improved, but still inexact description of the change of the heat of vaporization with the temperature.

  8. Entropy of vaporization - Wikipedia

    en.wikipedia.org/wiki/Entropy_of_vaporization

    where is the heat or enthalpy of vaporization. Since this is a thermodynamic equation, the symbol ⁠ ⁠ refers to the absolute thermodynamic temperature, measured in kelvins (K). The entropy of vaporization is then equal to the heat of vaporization divided by the boiling point: [2] [3]

  9. Trouton's rule - Wikipedia

    en.wikipedia.org/wiki/Trouton's_rule

    In thermodynamics, Trouton's rule states that the (molar) entropy of vaporization is almost the same value, about 85–88 J/(K·mol), for various kinds of liquids at their boiling points. [1] The entropy of vaporization is defined as the ratio between the enthalpy of vaporization and the boiling temperature.