enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sound pressure - Wikipedia

    en.wikipedia.org/wiki/Sound_pressure

    Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone , and in water with a hydrophone .

  3. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the equation describes acoustic waves in only one spatial dimension, while a more general form describes waves in three dimensions.

  4. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    The speed of sound (i.e., the longitudinal motion of wavefronts) is related to frequency and wavelength of a wave by =.. This is different from the particle velocity , which refers to the motion of molecules in the medium due to the sound, and relates to the plane wave pressure to the fluid density and sound speed by =.

  5. Transmission loss - Wikipedia

    en.wikipedia.org/wiki/Transmission_loss

    Transmission loss in underwater acoustics describes the decrease of sound intensity that is reduced by a bubble curtain or other damping structure at a given frequency. The same term is sometimes used to mean propagation loss , which is a measure of the reduction in sound intensity between the sound source and a receiver, defined as the ...

  6. Acoustic impedance - Wikipedia

    en.wikipedia.org/wiki/Acoustic_impedance

    p is the acoustic pressure in the medium; ρ is the volumetric mass density of the medium; c is the speed of the sound waves traveling in the medium; δ is the particle displacement; x is the space variable along the direction of propagation of the sound waves. This equation is valid both for fluids and solids. In fluids, ρc 2 = K (K stands ...

  7. A-weighting - Wikipedia

    en.wikipedia.org/wiki/A-weighting

    A graph of the A-, B-, C- and D-weightings across the frequency range 10 Hz – 20 kHz Video illustrating A-weighting by analyzing a sine sweep (contains audio). A-weighting is a form of frequency weighting and the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. [1]

  8. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound in seawater depends on pressure (hence depth), temperature (a change of 1 °C ~ 4 m/s), and salinity (a change of 1‰ ~ 1 m/s), and empirical equations have been derived to accurately calculate the speed of sound from these variables. [25] [26] Other factors affecting the speed of sound are minor. Since in most ocean regions ...

  9. Sound power - Wikipedia

    en.wikipedia.org/wiki/Sound_power

    Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [2] as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface."