Search results
Results from the WOW.Com Content Network
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
The sagitta also has uses in physics where it is used, along with chord length, to calculate the radius of curvature of an accelerated particle. This is used especially in bubble chamber experiments where it is used to determine the momenta of decay particles. Likewise historically the sagitta is also utilised as a parameter in the calculation ...
The following can be used to find the versine of a given constant radius curve: [2] The Hallade method is to use the chord to continuously measure the versine in an overlapping pattern along the curve. The versine values for the perfect circular curve would have the same number. [3]
Curvature of Riemannian manifolds of dimension at least two can be defined intrinsically without reference to a larger space. For curves, the canonical example is that of a circle, which has a curvature equal to the reciprocal of its radius. Smaller circles bend more sharply, and hence have higher curvature.
The equation defining a plane curve expressed in polar coordinates is known as a polar equation. In many cases, such an equation can simply be specified by defining r as a function of φ . The resulting curve then consists of points of the form ( r ( φ ), φ ) and can be regarded as the graph of the polar function r .
Hence an implicit curve can be considered as the set of zeros of a function of two variables. Implicit means that the equation is not expressed as a solution for either x in terms of y or vice versa. If (,) is a polynomial in two variables, the corresponding curve is called an algebraic curve, and specific methods are available for studying it.
This two-mile extravaganza is packed with more than a million lights, including twinkling tunnels, festive displays, and even a synchronized show set to music. Lights on the Lake.
where R is the radius of curvature of the optical surface. The sag S ( r ) is the displacement along the optic axis of the surface from the vertex, at distance r {\displaystyle r} from the axis. A good explanation both of this approximate formula and the exact formula can be found here .