enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  3. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    That is, LSTM can learn tasks that require memories of events that happened thousands or even millions of discrete time steps earlier. Problem-specific LSTM-like topologies can be evolved. [56] LSTM works even given long delays between significant events and can handle signals that mix low and high-frequency components.

  4. Time aware long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Time_aware_long_short-term...

    Time Aware LSTM (T-LSTM) is a long short-term memory (LSTM) unit capable of handling irregular time intervals in longitudinal patient records. T-LSTM was developed by researchers from Michigan State University, IBM Research, and Cornell University and was first presented in the Knowledge Discovery and Data Mining (KDD) conference. [1]

  5. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function. Then, using PDF of each class, the class probability of a new input is estimated and Bayes’ rule is employed to allocate it to the class with the highest posterior probability. [ 13 ]

  6. Connectionist temporal classification - Wikipedia

    en.wikipedia.org/wiki/Connectionist_temporal...

    Connectionist temporal classification (CTC) is a type of neural network output and associated scoring function, for training recurrent neural networks (RNNs) such as LSTM networks to tackle sequence problems where the timing is variable.

  7. Jürgen Schmidhuber - Wikipedia

    en.wikipedia.org/wiki/Jürgen_Schmidhuber

    This led to the long short-term memory (LSTM), a type of recurrent neural network. The name LSTM was introduced in a tech report (1995) leading to the most cited LSTM publication (1997), co-authored by Hochreiter and Schmidhuber. [19] It was not yet the standard LSTM architecture which is used in almost all current applications.

  8. College Football Playoff bracket: Full schedule, how to watch ...

    www.aol.com/college-football-playoff-bracket...

    The first 12-team College Football Playoff field is finally set, and not without some controversy.But the games that will decide the national championship are nonetheless almost here and, as the ...

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]