Search results
Results from the WOW.Com Content Network
If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
Defining equation SI units Dimension Flow velocity vector field u ... Physics for Scientists and Engineers: With Modern Physics (6th ed.).
Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other. [7] [8] Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces. [9] [10] [11] Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body.
Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...
It is an empirical equation developed by Frenchman Gaspard de Prony in the 19th century: h f = L D ( a V + b V 2 ) {\displaystyle h_{f}={\frac {L}{D}}(aV+bV^{2})} where h f is the head loss due to friction, calculated from: the ratio of the length to diameter of the pipe L/D , the velocity of the flow V , and two empirical factors a and b to ...
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
This function represents half of the rate of energy dissipation of the system through friction. The force of friction is negative the velocity gradient of the dissipation function, F → f = − ∇ v R ( v ) {\displaystyle {\vec {F}}_{f}=-\nabla _{v}R(v)} , analogous to a force being equal to the negative position gradient of a potential.