Search results
Results from the WOW.Com Content Network
A hydrohalogenation reaction is the electrophilic addition of hydrogen halides like hydrogen chloride or hydrogen bromide to alkenes to yield the corresponding haloalkanes. [ 1 ] [ 2 ] [ 3 ] If the two carbon atoms at the double bond are linked to a different number of hydrogen atoms, the halogen is found preferentially at the carbon with fewer ...
Tetrafluoroethane (a haloalkane) is a colorless liquid that boils well below room temperature (as seen here) and can be extracted from common canned air canisters by simply inverting them during use. The haloalkanes (also known as halogenoalkanes or alkyl halides) are alkanes containing one or more halogen substituents. [1]
Dehydrohalogenation to give an alkene. In chemistry, dehydrohalogenation is an elimination reaction which removes a hydrogen halide from a substrate. The reaction is usually associated with the synthesis of alkenes, but it has wider applications.
Illustrative of the bromination of an alkene is the route to the anesthetic halothane from trichloroethylene: [6] Iodination and bromination can be effected by the addition of iodine and bromine to alkenes. The reaction, which conveniently proceeds with the discharge of the color of I 2 and Br 2, is the basis of the analytical method.
The reaction mechanism for an alkene bromination can be described as follows. In the first step of the reaction, a bromine molecule approaches the electron-rich alkene carbon–carbon double bond. The bromine atom closer to the bond takes on a partial positive charge as its electrons are repelled by the electrons of the double bond.
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
Arrow-pushing mechanism for the Darzens reaction. If the starting halide is an α-halo amide, the product is an α,β-epoxy amide. [8] If an α-halo ketone is used, the product is an α,β-epoxy ketone. [2] Any sufficiently strong base can be used for the initial deprotonation.
The general structure is RR′C(X)C(=O)R where R is an alkyl or aryl residue and X any one of the halogens. The preferred conformation of a halo ketone is that of a cisoid with the halogen and carbonyl sharing the same plane as the steric hindrance with the carbonyl alkyl group is generally larger.