Search results
Results from the WOW.Com Content Network
The prime decomposition theorem for 3-manifolds states that every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) collection of prime 3-manifolds. A manifold is prime if it cannot be presented as a connected sum of more than one manifold, none of which is the sphere of the same dimension.
If is a prime 3-manifold then either it is or the non-orientable bundle over , or it is irreducible, which means that any embedded 2-sphere bounds a ball. So the theorem can be restated to say that there is a unique connected sum decomposition into irreducible 3-manifolds and fiber bundles of S 2 {\displaystyle S^{2}} over S 1 . {\displaystyle ...
Once a small subfield of geometric topology, the theory of 3-manifolds has experienced tremendous growth in the latter half of the 20th century. The methods used tend to be quite specific to three dimensions, since different phenomena occur for 4-manifolds and higher dimensions.
Implicit in this definition is the use of a suitable category, such as the category of differentiable manifolds or the category of piecewise-linear manifolds. A 3-manifold is irreducible if and only if it is prime, except for two cases: the product and the non-orientable fiber bundle of the 2-sphere over the circle are both prime but not ...
A prism manifold is a closed 3-dimensional manifold M whose fundamental group is a central extension of a dihedral group.. The fundamental group π 1 (M) of M is a product of a cyclic group of order m with a group having presentation
Types of manifolds in engineering include: Exhaust manifold An engine part that collects the exhaust gases from multiple cylinders into one pipe. Also known as headers. Hydraulic manifold A component used to regulate fluid flow in a hydraulic system, thus controlling the transfer of power between actuators and pumps Inlet manifold (or "intake ...
A Seifert manifold is a closed 3-manifold together with a decomposition into a disjoint union of circles (called fibers) such that each fiber has a tubular neighborhood that forms a standard fibered torus.
Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...