Search results
Results from the WOW.Com Content Network
Winters's formula, [1] named after R. W. Winters, [2] is a formula used to evaluate respiratory compensation when analyzing acid-base disorders in the presence of metabolic acidosis. [ 3 ] [ 4 ] It can be given as:
The closing capacity (CC) is the volume in the lungs at which its smallest airways, the respiratory bronchioles, collapse. It is defined mathematically as the sum of the closing volume and the residual volume.
The normal relaxed state of the lung and chest is partially empty. Further exhalation requires muscular work. Inhalation is an active process requiring work. [4] Some of this work is to overcome frictional resistance to flow, and part is used to deform elastic tissues, and is stored as potential energy, which is recovered during the passive process of exhalation, Tidal breathing is breathing ...
The amount of respiratory compensation in metabolic acidosis can be estimated using Winters' formula. [2] Hyperventilation due to the compensation for metabolic acidosis persists for 24 to 48 hours after correction of the acidosis, and can lead to respiratory alkalosis. [3] This compensation process can occur within minutes. [4]
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
The alveolar gas equation is the method for calculating partial pressure of alveolar oxygen (p A O 2). The equation is used in assessing if the lungs are properly transferring oxygen into the blood. The alveolar air equation is not widely used in clinical medicine, probably because of the complicated appearance of its classic forms.
The Shunt equation (also known as the Berggren equation) quantifies the extent to which venous blood bypasses oxygenation in the capillaries of the lung.. “Shunt” and “dead space“ are terms used to describe conditions where either blood flow or ventilation do not interact with each other in the lung, as they should for efficient gas exchange to take place.
Lung volumes. Functional residual capacity (FRC) is the volume of air present in the lungs at the end of passive expiration. [1] At FRC, the opposing elastic recoil forces of the lungs and chest wall are in equilibrium and there is no exertion by the diaphragm or other respiratory muscles.