Search results
Results from the WOW.Com Content Network
Electron transfer reactions are central to myriad processes and properties in soils, and redox potential, quantified as Eh (platinum electrode potential relative to the standard hydrogen electrode) or pe (analogous to pH as -log electron activity), is a master variable, along with pH, that controls and is governed by chemical reactions and ...
The overall chemical reaction taking place in a cell is made up of two independent half-reactions, which describe chemical changes at the two electrodes. To focus on the reaction at the working electrode, the reference electrode is standardized with constant (buffered or saturated) concentrations of each participant of the redox reaction. [1]
The reaction quotient (Q r) of the half-reaction is the ratio between the chemical activities (a) of the reduced form (the reductant, a red) and the oxidized form (the oxidant, a ox). = Considering the 2 H + / H 2 redox couple:
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
The aqueous solution in the classical reaction contains glucose, sodium hydroxide and methylene blue. [14] In the first step an acyloin of glucose is formed. The next step is a redox reaction of the acyloin with methylene blue in which the glucose is oxidized to diketone in alkaline solution [6] and methylene blue is reduced to colorless leucomethylene blue.
A redox gradient is a series of reduction-oxidation reactions sorted according to redox potential. [ 4 ] [ 5 ] The redox ladder displays the order in which redox reactions occur based on the free energy gained from redox pairs.
Organic redox reactions: the Birch reduction. Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds.In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. [1]
The decomposition of a reaction into half reactions is key to understanding a variety of chemical processes. For example, in the above reaction, it can be shown that this is a redox reaction in which Fe is oxidised, and Cl is reduced. Note the transfer of electrons from Fe to Cl.