Search results
Results from the WOW.Com Content Network
In object-oriented programming, "immutable interface" is a pattern for designing an immutable object. [1] The immutable interface pattern involves defining a type which does not provide any methods which mutate state. Objects which are referenced by that type are not seen to have any mutable state, and appear immutable.
In object-oriented (OO) and functional programming, an immutable object (unchangeable [1] object) is an object whose state cannot be modified after it is created. [2] This is in contrast to a mutable object (changeable object), which can be modified after it is created. [ 3 ]
Primitive wrapper classes are not the same thing as primitive types. Whereas variables, for example, can be declared in Java as data types double, short, int, etc., the primitive wrapper classes create instantiated objects and methods that inherit but hide the primitive data types, not like variables that are assigned the data type values.
Final variables can be used to construct trees of immutable objects. Once constructed, these objects are guaranteed not to change anymore. To achieve this, an immutable class must only have final fields, and these final fields may only have immutable types themselves. Java's primitive types are immutable, as are strings and several other classes.
In Java, a LinkedList can only store values of type Object. One might desire to have a LinkedList of int , but this is not directly possible. Instead Java defines primitive wrapper classes corresponding to each primitive type : Integer and int , Character and char , Float and float , etc.
This example uses a String as the state, which is an immutable object in Java. In real-life scenarios the state will almost always be a mutable object, in which case a copy of the state must be made. It must be said that the implementation shown has a drawback: it declares an internal class.
A properly written constructor leaves the resulting object in a valid state. Immutable objects must be initialized in a constructor. Most languages allow overloading the constructor in that there can be more than one constructor for a class, with differing parameters. Some languages take consideration of some special types of constructors.
In C#, a class is a reference type while a struct (concept derived from the struct in C language) is a value type. [5] Hence an instance derived from a class definition is an object while an instance derived from a struct definition is said to be a value object (to be precise a struct can be made immutable to represent a value object declaring attributes as readonly [6]).