Search results
Results from the WOW.Com Content Network
Decimal fractions are commonly expressed using decimal notation in which the implied denominator is determined by the number of digits to the right of a decimal separator, the appearance of which (e.g., a period, an interpunct (·), a comma) depends on the locale (for examples, see Decimal separator). Thus, for 0.75 the numerator is 75 and the ...
Scientific calculator displays of fractions and decimal equivalents Input Electronic calculators contain a keyboard with buttons for digits and arithmetical operations; some even contain "00" and "000" buttons to make larger or smaller numbers easier to enter.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
k is a decimal digit and R is a fraction that must be converted to decimal. It usually has only a single digit in the numerator, and one or two digits in the denominator, so the conversion to decimal can be done mentally. Example: find the square root of 75. 75 = 75 × 10 2 · 0, so a is 75 and n is 0.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
To calculate a percentage of a percentage, convert both percentages to fractions of 100, or to decimals, and multiply them. For example, 50% of 40% is: 50 / 100 × 40 / 100 = 0.50 × 0.40 = 0.20 = 20 / 100 = 20%. It is not correct to divide by 100 and use the percent sign at the same time; it would literally imply ...
For instance, the rational numbers , , and are written as 0.1, 3.71, and 0.0044 in the decimal fraction notation. [100] Modified versions of integer calculation methods like addition with carry and long multiplication can be applied to calculations with decimal fractions. [ 101 ]
Any such decimal fraction, i.e.: d n = 0 for n > N, may be converted to its equivalent infinite decimal expansion by replacing d N by d N − 1 and replacing all subsequent 0s by 9s (see 0.999...). In summary, every real number that is not a decimal fraction has a unique infinite decimal expansion.