Search results
Results from the WOW.Com Content Network
A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block swap: Rotate region A; Rotate region B; Rotate region AB
When the array contains only duplicates of a relatively small number of items, a constant-time perfect hash function can greatly speed up finding where to put an item 1, turning the sort from Θ(n 2) time to Θ(n + k) time, where k is the total number of hashes. The array ends up sorted in the order of the hashes, so choosing a hash function ...
MergeInPlace(array, A, B) while (|A| > 0 and |B| > 0) // find the first place in B where the first item in A needs to be inserted mid = BinaryFirst(array, array[A.start], B) // rotate A into place amount = mid - A.end Rotate(array, amount, [A.start, mid)) // calculate the new A and B ranges B = [mid, B.end) A = [A.start + amount, mid) A.start ...
A further relaxation requiring only a list of the k smallest elements, but without requiring that these be ordered, makes the problem equivalent to partition-based selection; the original partial sorting problem can be solved by such a selection algorithm to obtain an array where the first k elements are the k smallest, and sorting these, at a total cost of O(n + k log k) operations.
where μ is the Möbius function and the sum is over the divisors d of k. Furthermore, the cycle containing a=1 (i.e. the second element of the first row of the matrix) is always a cycle of maximum length L, and the lengths k of all other cycles must be divisors of L (Cate & Twigg, 1977).
Given an array a of n items, suppose we want an array that holds the same elements in reversed order and to dispose of the original. One seemingly simple way to do this is to create a new array of equal size, fill it with copies from a in the appropriate order and then delete a.
The dynamic array approach uses a variant of a dynamic array that can grow from both ends, sometimes called array deques. These array deques have all the properties of a dynamic array, such as constant-time random access , good locality of reference , and inefficient insertion/removal in the middle, with the addition of amortized constant-time ...
Matrices of 8-element circular shifts to the left and right In combinatorial mathematics , a circular shift is the operation of rearranging the entries in a tuple , either by moving the final entry to the first position, while shifting all other entries to the next position, or by performing the inverse operation.