enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperconjugation - Wikipedia

    en.wikipedia.org/wiki/Hyperconjugation

    Hyperconjugation can be used to rationalize a variety of chemical phenomena, including the anomeric effect, the gauche effect, the rotational barrier of ethane, the beta-silicon effect, the vibrational frequency of exocyclic carbonyl groups, and the relative stability of substituted carbocations and substituted carbon centred radicals, and the thermodynamic Zaitsev's rule for alkene stability.

  3. Negative hyperconjugation in silicon - Wikipedia

    en.wikipedia.org/wiki/Negative_hyperconjugation...

    Negative hyperconjugation is a theorized phenomenon in organosilicon compounds, in which hyperconjugation stabilizes or destabilizes certain accumulations of positive charge. The phenomenon explains corresponding peculiarities in the stereochemistry and rate of hydrolysis .

  4. Negative hyperconjugation - Wikipedia

    en.wikipedia.org/wiki/Negative_hyperconjugation

    Negative hyperconjugation is seldom observed, though it can be most commonly observed when the σ *-orbital is located on certain C–F or C–O bonds. [ 3 ] [ 4 ] In negative hyperconjugation, the electron density flows in the opposite direction (from a π- or p-orbital to an empty σ * -orbital) than it does in the more common ...

  5. Gauche effect - Wikipedia

    en.wikipedia.org/wiki/Gauche_effect

    Hyperconjugation model for explaining the gauche effect in 1,2-difluoroethane. Key in the bent bond explanation of the gauche effect in difluoroethane is the increased p orbital character of both C−F bonds due to the large electronegativity of fluorine. As a result, electron density builds up above and below to the left and right of the ...

  6. Zaytsev's rule - Wikipedia

    en.wikipedia.org/wiki/Zaytsev's_rule

    In organic chemistry, Zaytsev's rule (or Zaitsev's rule, Saytzeff's rule, Saytzev's rule) is an empirical rule for predicting the favored alkene product(s) in elimination reactions.

  7. Cieplak effect - Wikipedia

    en.wikipedia.org/wiki/Cieplak_Effect

    The Cieplak effect uses hyperconjugation to explain the face-selective addition of nucleophiles to carbonyl carbons. Specifically, donation into the low-lying σ* C-Nuc bond by antiperiplanar electron-donating substituents is the stabilizing interaction which lowers the transition state energy of one stereospecific reaction pathway and thus ...

  8. Three-center two-electron bond - Wikipedia

    en.wikipedia.org/wiki/Three-center_two-electron_bond

    This bonding pattern is also seen in trimethylaluminium, which forms a dimer Al 2 (CH 3) 6 with the carbon atoms of two of the methyl groups in bridging positions. This type of bond also occurs in carbon compounds, where it is sometimes referred to as hyperconjugation; another name for asymmetrical three-center two-electron bonds.

  9. Carbon–fluorine bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–fluorine_bond

    Hyperconjugation model for explaining the gauche effect in 1,2-difluoroethane There are two main explanations for the gauche effect: hyperconjugation and bent bonds . In the hyperconjugation model, the donation of electron density from the carbon–hydrogen σ bonding orbital to the carbon–fluorine σ * antibonding orbital is considered the ...