Search results
Results from the WOW.Com Content Network
The outer edges of the diagram, the envelope, show the possible conditions that the aircraft can reach in straight and level flight. For instance, the aircraft described by the black altitude envelope on the right can fly at altitudes up to about 52,000 feet (16,000 m), at which point the thinner air means it can no longer climb.
Hence, the aircraft will not have any excess capacity to climb further. Stated technically, it is the altitude where the maximum sustained (with no decreasing airspeed) rate of climb is zero. Compared to service ceiling, the absolute ceiling of commercial aircraft is much higher than for standard operational purposes.
The aircraft Mach number at which these effects appear is known as its critical Mach number, or M CRIT. The true airspeed corresponding to the critical Mach number generally decreases with altitude. The flight envelope is a plot of various curves representing the limits of the aircraft's true airspeed and altitude. Generally, the top-left ...
It has been widely misunderstood that flight below maneuvering speed will provide total protection from structural failure.In response to the destruction of American Airlines Flight 587, a CFR Final Rule was issued clarifying that "flying at or below the design maneuvering speed does not allow a pilot to make multiple large control inputs in one airplane axis or single full control inputs in ...
Wellington Mk.X HE239 of No.428 Sqn. RCAF, illustrating the geodetic construction and the level of battle damage it could sustain and still return to base. The earliest-known use of a geodetic airframe design for any aircraft was for the pre-World War I Schütte-Lanz SL1 rigid airship's envelope structure] of 1911, with the airship capable of up to a 38.3 km/h (23.8 mph) top airspeed.
China Airlines Flight 006 damaged by going outside its flight envelope to gain control after a drop of 3,000 m in 20 seconds. Flight envelope protection is a human machine interface extension of an aircraft's control system that prevents the pilot of an aircraft from making control commands that would force the aircraft to exceed its structural and aerodynamic operating limits.
At higher airspeeds, more and more of the rotor disc will be in clean air and the lift differential will decrease, however transverse flow effect will be experienced to some extent across the whole flight envelope. [3]: 2–28 In a typical single rotor helicopter, the effect is greatest just before Effective Translational Lift (ETL).
The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. On March 23, 1966 the M2-F2 made its first captive flight—attached to the B-52 carrier aircraft throughout.