Search results
Results from the WOW.Com Content Network
In most cases, including even simple curves, there are no closed-form solutions for arc length and numerical integration is necessary. Numerical integration of the arc length integral is usually very efficient. For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral.
In this equation, the origin is the midpoint of the horizontal range of the projectile, and if the ground is flat, the parabolic arc is plotted in the range . This expression can be obtained by transforming the Cartesian equation as stated above by y = r sin ϕ {\displaystyle y=r\sin \phi } and x = r cos ϕ {\displaystyle x=r\cos \phi } .
The arc length of one branch between x = x 1 and x = x 2 is a ln y 1 / y 2 . The area between the tractrix and its asymptote is π a 2 / 2 , which can be found using integration or Mamikon's theorem. The envelope of the normals of the tractrix (that is, the evolute of the tractrix) is the catenary (or chain curve) given by y = a ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The trigonometric sine and cosine analogously relate the arc length of an arc of a unit-diameter circle to the distance of one endpoint from the origin. L {\displaystyle {\mathcal {L}}} , the lemniscate of Bernoulli with unit distance from its center to its furthest point (i.e. with unit "half-width"), is essential in the theory of the ...
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (c. 1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse .
The determination of the arc length of arcs of the lemniscate leads to elliptic integrals, as was discovered in the eighteenth century. Around 1800, the elliptic functions inverting those integrals were studied by C. F. Gauss (largely unpublished at the time, but allusions in the notes to his Disquisitiones Arithmeticae).
The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...