enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diameter (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Diameter_(graph_theory)

    In graph theory, the diameter of a connected undirected graph is the farthest distance between any two of its vertices. That is, it is the diameter of a set for the set of vertices of the graph, and for the shortest-path distance in the graph. Diameter may be considered either for weighted or for unweighted graphs.

  3. Degree diameter problem - Wikipedia

    en.wikipedia.org/wiki/Degree_diameter_problem

    In graph theory, the degree diameter problem is the problem of finding the largest possible graph G (in terms of the size of its vertex set V) of diameter k such that the largest degree of any of the vertices in G is at most d.

  4. Table of the largest known graphs of a given diameter and ...

    en.wikipedia.org/wiki/Table_of_the_largest_known...

    In graph theory, the degree diameter problem is the problem of finding the largest possible graph for a given maximum degree and diameter.The Moore bound sets limits on this, but for many years mathematicians in the field have been interested in a more precise answer.

  5. Distance (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Distance_(graph_theory)

    A metric space defined over a set of points in terms of distances in a graph defined over the set is called a graph metric. The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected. The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in ...

  6. Moore graph - Wikipedia

    en.wikipedia.org/wiki/Moore_graph

    In graph theory, a Moore graph is a regular graph whose girth (the shortest cycle length) is more than twice its diameter (the distance between the farthest two vertices). If the degree of such a graph is d and its diameter is k , its girth must equal 2 k + 1 .

  7. Diameter (computational geometry) - Wikipedia

    en.wikipedia.org/wiki/Diameter_(computational...

    The diameter is always attained by two points of the convex hull of the input. A trivial brute-force search can be used to find the diameter of n {\displaystyle n} points in time O ( n 2 ) {\displaystyle O(n^{2})} (assuming constant-time distance evaluations) but faster algorithms are possible for points in low dimensions.

  8. McKay–Miller–Širáň graph - Wikipedia

    en.wikipedia.org/wiki/McKay–Miller–Širáň...

    In graph theory, the McKay–Miller–Širáň graphs are an infinite class of vertex-transitive graphs with diameter two, and with a large number of vertices relative to their diameter and degree. They are named after Brendan McKay, Mirka Miller, and Jozef Širáň, who first constructed them using voltage graphs in 1998. [1]

  9. Metric dimension (graph theory) - Wikipedia

    en.wikipedia.org/.../Metric_dimension_(graph_theory)

    In graph theory, the metric dimension of a graph G is the minimum cardinality of a subset S of vertices such that all other vertices are uniquely determined by their distances to the vertices in S. Finding the metric dimension of a graph is an NP-hard problem; the decision version, determining whether the metric dimension is less than a given ...