enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    When sound is moving through a medium that does not have constant physical properties, it may be refracted (either dispersed or focused). [5] Spherical compression (longitudinal) waves. The mechanical vibrations that can be interpreted as sound can travel through all forms of matter: gases, liquids, solids, and plasmas.

  3. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  4. Sound energy - Wikipedia

    en.wikipedia.org/wiki/Sound_energy

    In physics, sound energy is a form of energy that can be heard by living things. Only those waves that have a frequency of 16 Hz to 20 kHz are audible to humans. However, this range is an average and will slightly change from individual to individual.

  5. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast). In an exceptionally stiff material such as diamond, sound travels at 12,000 m/s (39,370 ft/s), [ 2 ] – about 35 times its speed in air and about the fastest it can travel under ...

  6. Absorption (acoustics) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(acoustics)

    Just as the acoustic energy was transmitted through the air as pressure differentials (or deformations), the acoustic energy travels through the material which makes up the wall in the same manner. Deformation causes mechanical losses via conversion of part of the sound energy into heat, resulting in acoustic attenuation , mostly due to the ...

  7. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  8. Acoustics - Wikipedia

    en.wikipedia.org/wiki/Acoustics

    Aeroacoustics is the study of noise generated by air movement, for instance via turbulence, and the movement of sound through the fluid air. This knowledge was applied in the 1920s and '30s to detect aircraft before radar was invented and is applied in acoustical engineering to study how to quieten aircraft .

  9. Particle displacement - Wikipedia

    en.wikipedia.org/wiki/Particle_displacement

    In most cases this is a longitudinal wave of pressure (such as sound), but it can also be a transverse wave, such as the vibration of a taut string. In the case of a sound wave travelling through air, the particle displacement is evident in the oscillations of air molecules with, and against, the direction in which the sound wave is travelling. [2]