Search results
Results from the WOW.Com Content Network
In statistics, a concordant pair is a pair of observations, each on two variables, (X 1,Y 1) and (X 2,Y 2), having the property that = (), where "sgn" refers to whether a number is positive, zero, or negative (its sign).
All points in the gray area are concordant and all points in the white area are discordant with respect to point (,). With = points, there are a total of () = possible point pairs. In this example there are 395 concordant point pairs and 40 discordant point pairs, leading to a Kendall rank correlation coefficient of 0.816.
In research, concordance is often discussed in the context of both members of a pair of twins. Twins are concordant when both have or both lack a given trait. [1] The ideal example of concordance is that of identical twins, because the genome is the same, an equivalence that helps in discovering causation via deconfounding, regarding genetic ...
Somers’ D takes values between when all pairs of the variables disagree and when all pairs of the variables agree. Somers’ D is named after Robert H. Somers, who proposed it in 1962. [1] Somers’ D plays a central role in rank statistics and is the parameter behind many nonparametric methods. [2]
The concordance correlation coefficient is nearly identical to some of the measures called intra-class correlations.Comparisons of the concordance correlation coefficient with an "ordinary" intraclass correlation on different data sets found only small differences between the two correlations, in one case on the third decimal. [2]
In statistics, inter-rater reliability (also called by various similar names, such as inter-rater agreement, inter-rater concordance, inter-observer reliability, inter-coder reliability, and so on) is the degree of agreement among independent observers who rate, code, or assess the same phenomenon.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
The analysis is conducted on pairs, defined as a member of one group compared to a member of the other group. For example, the fastest runner in the study is a member of four pairs: (1,5), (1,7), (1,8), and (1,9). All four of these pairs support the hypothesis, because in each pair the runner from Group A is faster than the runner from Group B.