enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.

  3. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    The dot products on every tangent plane, packaged together into one mathematical object, are a Riemannian metric. In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined.

  4. Exponential map - Wikipedia

    en.wikipedia.org/wiki/Exponential_map

    In differential geometry, the exponential map is a generalization of the ordinary exponential function of mathematical analysis. Important special cases include: exponential map (Riemannian geometry) for a manifold with a Riemannian metric, exponential map (Lie theory) from a Lie algebra to a Lie group,

  5. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    This is a list of formulas encountered in Riemannian geometry. Einstein notation is used throughout this article. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise.

  6. Normal coordinates - Wikipedia

    en.wikipedia.org/wiki/Normal_coordinates

    Polar coordinates provide a number of fundamental tools in Riemannian geometry. The radial coordinate is the most significant: geometrically it represents the geodesic distance to p of nearby points. Gauss's lemma asserts that the gradient of r is simply the partial derivative /. That is,

  7. Category:Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Riemannian_geometry

    In differential geometry, Riemannian geometry is the study of smooth manifolds with Riemannian metrics; i.e. a choice of positive-definite quadratic form on a manifold's tangent spaces which varies smoothly from point to point. This gives in particular local ideas of angle, length of curves, and volume.

  8. Connection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Connection_(mathematics)

    In pseudo-Riemannian and Riemannian geometry the Levi-Civita connection is a special connection associated to the metric tensor. These are examples of affine connections . There is also a concept of projective connection , of which the Schwarzian derivative in complex analysis is an instance.

  9. Fundamental theorem of Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem of Riemannian geometry states that on any Riemannian manifold (or pseudo-Riemannian manifold) there is a unique affine connection that is torsion-free and metric-compatible, called the Levi-Civita connection or (pseudo-) Riemannian connection of the given metric.