enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phosphorescence - Wikipedia

    en.wikipedia.org/wiki/Phosphorescence

    Jablonski diagram of an energy scheme used to explain the difference between fluorescence and phosphorescence. The excitation of molecule A to its singlet excited state ( 1 A*) may, after a short time between absorption and emission (fluorescence lifetime), return immediately to ground state , giving off a photon via fluorescence (decay time).

  3. Jablonski diagram - Wikipedia

    en.wikipedia.org/wiki/Jablonski_diagram

    Jablonski diagram including vibrational levels for absorbance, non-radiative decay, and fluorescence. When a molecule absorbs a photon, the photon energy is converted and increases the molecule's internal energy level. Likewise, when an excited molecule releases energy, it can do so in the form of a photon.

  4. Phosphor - Wikipedia

    en.wikipedia.org/wiki/Phosphor

    Jablonski diagram shows the energy levels in a fluorescing atom in a phosphor. An electron in the phosphor absorbs a high-energy photon from the applied radiation, exciting it to a higher energy level. After losing some energy in non-radiative transitions, it eventually transitions back to its ground state energy level by fluorescence, emitting ...

  5. Kasha's rule - Wikipedia

    en.wikipedia.org/wiki/Kasha's_rule

    A corollary of Kasha's rule is the Vavilov rule, which states that the quantum yield of luminescence is generally independent of the excitation wavelength. [4] [7] This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively.

  6. Photoluminescence - Wikipedia

    en.wikipedia.org/wiki/Photoluminescence

    Electrons change energy states by either resonantly gaining energy from absorption of a photon or losing energy by emitting photons. In chemistry-related disciplines, one often distinguishes between fluorescence and phosphorescence. The former is typically a fast process, yet some amount of the original energy is dissipated so that re-emitted ...

  7. Fluorescence in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_in_the_life...

    A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...

  8. Persistent luminescence - Wikipedia

    en.wikipedia.org/wiki/Persistent_luminescence

    In phosphorescence, even if the emission lives several seconds, this is due to deexcitation between two electronic states of different spin multiplicity. Persistent luminescence involves energy traps (such as electron or hole traps) in a material, [4] which are filled during the excitation. Afterward, the stored energy is gradually released to ...

  9. Intersystem crossing - Wikipedia

    en.wikipedia.org/wiki/Intersystem_crossing

    Fluorescence microscopy relies upon fluorescent compounds, or fluorophores, in order to image biological systems.Since fluorescence and phosphorescence are competitive methods of relaxation, a fluorophore that undergoes intersystem crossing to the triplet excited state no longer fluoresces and instead remains in the triplet excited state, which has a relatively long lifetime, before ...