Search results
Results from the WOW.Com Content Network
Method chaining is a common syntax for invoking multiple method calls in object-oriented programming languages. Each method returns an object, allowing the calls to be chained together in a single statement without requiring variables to store the intermediate results.
Cascading can be implemented in terms of chaining by having the methods return the target object (receiver, this, self).However, this requires that the method be implemented this way already – or the original object be wrapped in another object that does this – and that the method not return some other, potentially useful value (or nothing if that would be more appropriate, as in setters).
In software engineering, a fluent interface is an object-oriented API whose design relies extensively on method chaining. Its goal is to increase code legibility by creating a domain-specific language (DSL). The term was coined in 2005 by Eric Evans and Martin Fowler. [1]
Exception chaining, or exception wrapping, is an object-oriented programming technique of handling exceptions by re-throwing a caught exception after wrapping it inside a new exception. The original exception is saved as a property (such as cause) of the new exception. The idea is that a method should throw exceptions defined at the same ...
The implementation of exception handling in programming languages typically involves a fair amount of support from both a code generator and the runtime system accompanying a compiler. (It was the addition of exception handling to C++ that ended the useful lifetime of the original C++ compiler, Cfront. [18]) Two schemes are most common.
In object-oriented design, the chain-of-responsibility pattern is a behavioral design pattern consisting of a source of command objects and a series of processing objects. [1] Each processing object contains logic that defines the types of command objects that it can handle; the rest are passed to the next processing object in the chain.
Object-oriented programming (OOP) is a programming paradigm based on the concept of objects, [1] which can contain data and code: data in the form of fields (often known as attributes or properties), and code in the form of procedures (often known as methods).
It should be possible to define a new operation for (some) classes of an object structure without changing the classes. When new operations are needed frequently and the object structure consists of many unrelated classes, it's inflexible to add new subclasses each time a new operation is required because "[..] distributing all these operations across the various node classes leads to a system ...