enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Freundlich equation - Wikipedia

    en.wikipedia.org/wiki/Freundlich_equation

    The same relationship is also applicable for the concentration of a solute adsorbed onto the surface of a solid and the concentration of the solute in the liquid phase. In 1909, Herbert Freundlich gave an expression representing the isothermal variation of adsorption of a quantity of gas adsorbed by unit mass of solid adsorbent with gas ...

  3. Henry adsorption constant - Wikipedia

    en.wikipedia.org/wiki/Henry_adsorption_constant

    Source: [2] If a solid body is modeled by a constant field and the structure of the field is such that it has a penetrable core, then = ′ [⁡ ⁡ ()] ′ [⁡ ()]. Here ′ is the position of the dividing surface, = is the external force field, simulating a solid, is the field value deep in the solid, = /, is the Boltzmann constant, and is the temperature.

  4. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  5. Absorbance - Wikipedia

    en.wikipedia.org/wiki/Absorbance

    Nevertheless, the absorbance unit or AU is commonly used in ultraviolet–visible spectroscopy and its high-performance liquid chromatography applications, often in derived units such as the milli-absorbance unit (mAU) or milli-absorbance unit-minutes (mAU×min), a unit of absorbance integrated over time. [6] Absorbance is related to optical ...

  6. Langmuir adsorption model - Wikipedia

    en.wikipedia.org/wiki/Langmuir_adsorption_model

    The concentration of sites is given by dividing the total number of sites (S 0) covering the whole surface by the area of the adsorbent (a): [ S 0 ] = S 0 / a . {\displaystyle [S_{0}]=S_{0}/a.} We can then calculate the concentration of all sites by summing the concentration of free sites [ S ] and occupied sites:

  7. Beer–Lambert law - Wikipedia

    en.wikipedia.org/wiki/Beer–Lambert_law

    The amount concentration c is then given by = (). For a more complicated example, consider a mixture in solution containing two species at amount concentrations c 1 and c 2 . The decadic attenuation coefficient at any wavelength λ is, given by μ 10 ( λ ) = ε 1 ( λ ) c 1 + ε 2 ( λ ) c 2 . {\displaystyle \mu _{10}(\lambda )=\varepsilon _{1 ...

  8. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    σ λ is their absorption cross-section at wavelength λ (units: area) B λ (T) is the Planck function for temperature T and wavelength λ (units: power/area/solid angle/wavelength - e.g. watts/cm 2 /sr/cm) I λ is the spectral intensity of the radiation entering the increment ds with the same units as B λ (T)

  9. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".