Search results
Results from the WOW.Com Content Network
Fritz Haber, 1918. The Haber process, [1] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [2] [3] It converts atmospheric nitrogen (N 2) to ammonia (NH 3) by a reaction with hydrogen (H 2) using finely divided iron metal as a catalyst:
Forming gas is a mixture of hydrogen (mole fraction varies) [1] and nitrogen. It is sometimes called a "dissociated ammonia atmosphere" due to the reaction which generates it: 2 NH 3 → 3 H 2 + N 2. It can also be manufactured by thermal cracking of ammonia, in an ammonia cracker or forming gas generator. [2]
Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the formula N H 3. A stable binary hydride and the simplest pnictogen hydride , ammonia is a colourless gas with a distinctive pungent smell.
Before the start of World War I, most ammonia was obtained by the dry distillation of nitrogenous vegetable and animal products; by the reduction of nitrous acid and nitrites with hydrogen; and also by the decomposition of ammonium salts by alkaline hydroxides or by quicklime, the salt most generally used being the chloride (sal-ammoniac).
Fritz Haber (German: [ˈfʁɪt͡s ˈhaːbɐ] ⓘ; 9 December 1868 – 29 January 1934) was a German chemist who received the Nobel Prize in Chemistry in 1918 for his invention of the Haber process, a method used in industry to synthesize ammonia from nitrogen gas and hydrogen gas.
The history of the Haber process begins with the invention of the Haber process at the dawn of the twentieth century. The process allows the economical fixation of atmospheric dinitrogen in the form of ammonia, which in turn allows for the industrial synthesis of various explosives and nitrogen fertilizers, and is probably the most important industrial process developed during the twentieth ...
The liquid nitrogen wash has two principle functions: [1] Removal of impurities such as carbon monoxide, argon and methane from the crude hydrogen gas; Addition of the required stoichiometric amount of nitrogen to the hydrogen stream to achieve the correct ammonia synthesis gas ratio of hydrogen to nitrogen of 3 : 1
Hydrogen, being the lightest existing gas (7% the density of air, 0.08988 g/L at STP), seems to be the most appropriate gas for lifting. It can be easily produced in large quantities, for example with the water-gas shift reaction or electrolysis, but hydrogen has several disadvantages: Hydrogen is extremely flammable.