Search results
Results from the WOW.Com Content Network
A spectrogram of Bloop. Bloop is the name given to an ultra-low-frequency and extremely powerful underwater sound detected by the U.S. National Oceanic and Atmospheric Administration (NOAA) in 1997. The sound is consistent with the noises generated by icequakes in large icebergs, or large icebergs scraping the ocean floor. [3]
This mechanism could explain the Bloop's wide detection range and distinct acoustic signature. [7] As oceanographer Yunbo Xie explains, the alteration of waveforms from a detected sound "can also be caused by so-called angular frequency dependent radiation patterns associated with antisymmetric mode motion of the ice cover." [6]: 59
Noise experts and some small specialized companies have slowly developed a limited number of calculation tools, which have increased in number and become more user-friendly, covering more application cases, and adding service elements to the noise calculation tools. The noise calculation process is complex in input (gathering data, correctly ...
A graph of the A-, B-, C- and D-weightings across the frequency range 10 Hz – 20 kHz Video illustrating A-weighting by analyzing a sine sweep (contains audio). A-weighting is a form of frequency weighting and the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. [1]
In atmospheric sounding and noise pollution, ambient noise level (sometimes called background noise level, reference sound level, or room noise level) is the background sound pressure level at a given location, normally specified as a reference level to study a new intrusive sound source.
Measurement from a spectrum analyzer showing a noise-like measurement from an unspecified component.. In signal theory, the noise floor is the measure of the signal created from the sum of all the noise sources and unwanted signals within a measurement system, where noise is defined as any signal other than the one being monitored.
Here, k ≈ 1.38 × 10 −23 J/K is the Boltzmann constant and kT 0 is the available noise power density (the noise is thermal noise, Johnson noise). As a numerical example: A receiver has a bandwidth of 100 MHz , a noise figure of 1.5 dB and the physical temperature of the system is 290 K .
The concepts of signal-to-noise ratio and dynamic range are closely related. Dynamic range measures the ratio between the strongest un-distorted signal on a channel and the minimum discernible signal, which for most purposes is the noise level. SNR measures the ratio between an arbitrary signal level (not necessarily the most powerful signal ...