Search results
Results from the WOW.Com Content Network
If we scale phase permeability w.r.t. absolute water permeability (i.e. =), we get an endpoint parameter for both oil and water relative permeability. If we scale phase permeability w.r.t. oil permeability with irreducible water saturation present, endpoint is one, and we are left with only the endpoint parameter. In order to satisfy both ...
Diamagnets are materials with a magnetic permeability less than μ 0 (a relative permeability less than 1). Consequently, diamagnetism is a form of magnetism that a substance exhibits only in the presence of an externally applied magnetic field. It is generally a quite weak effect in most materials, although superconductors exhibit a strong effect.
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
The difference () = () between the phases of two periodic signals and is called the phase difference or phase shift of relative to . [1] At values of t {\displaystyle t} when the difference is zero, the two signals are said to be in phase; otherwise, they are out of phase with each other.
The physical property that links the flow equations of the three fluid phases, is relative permeability of each fluid phase and pressure. This property of the fluid-rock system (i.e. water-oil-gas-rock system) is mainly a function of the fluid saturations , and it is linked to capillary pressure and the flowing process, implying that it is ...
In materials with relative permittivity, ε r, and relative permeability, μ r, the phase velocity of light becomes =, which is usually [note 5] less than c. In addition, E and B are perpendicular to each other and to the direction of wave propagation, and are in phase with each other.
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.