Search results
Results from the WOW.Com Content Network
If a multilayer perceptron has a linear activation function in all neurons, that is, a linear function that maps the weighted inputs to the output of each neuron, then linear algebra shows that any number of layers can be reduced to a two-layer input-output model.
A deep belief network (DBN) is a probabilistic, generative model made up of multiple hidden layers. It can be considered a composition of simple learning modules. [43] A DBN can be used to generatively pre-train a deep neural network (DNN) by using the learned DBN weights as the initial DNN weights.
The bottom layer of inputs is not always considered a real neural network layer. A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized ...
Typically, neurons are aggregated into layers. Different layers may perform different transformations on their inputs. Signals travel from the first layer (the input layer) to the last layer (the output layer), possibly passing through multiple intermediate layers (hidden layers). A network is typically called a deep neural network if it has at ...
A multiple timescales recurrent neural network (MTRNN) is a neural-based computational model that can simulate the functional hierarchy of the brain through self-organization depending on the spatial connection between neurons and on distinct types of neuron activities, each with distinct time properties.
Extreme learning machines are feedforward neural networks for classification, regression, clustering, sparse approximation, compression and feature learning with a single layer or multiple layers of hidden nodes, where the parameters of hidden nodes (not just the weights connecting inputs to hidden nodes) need to be tuned.
The perceptron learning rule originates from the Hebbian assumption, and was used by Frank Rosenblatt in his perceptron in 1958. The net is passed to the activation function and the function's output is used for adjusting the weights. The learning signal is the difference between the desired response and the actual response of a neuron.
The third covers multi-layer and cross-coupled perceptrons, and the fourth back-coupled perceptrons and problems for future study. Rosenblatt used the book to teach an interdisciplinary course entitled "Theory of Brain Mechanisms" that drew students from Cornell's Engineering and Liberal Arts colleges.