Search results
Results from the WOW.Com Content Network
The vector area of a parallelogram is given by the cross product of the two vectors that span it; it is twice the (vector) area of the triangle formed by the same vectors. In general, the vector area of any surface whose boundary consists of a sequence of straight line segments (analogous to a polygon in two dimensions) can be calculated using ...
In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. [a] Three equivalent definitions of parallelepiped are a hexahedron with three pairs of parallel faces,
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The selection of an origin and a basis define a unit cell, a parallelotope (i.e., generalization of a parallelogram (2D) or parallelepiped (3D) in higher dimensions) defined by the lattice basis vectors ,, …, where is the dimension of the space.
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
This is because the n-dimensional dV element is in general a parallelepiped in the new coordinate system, and the n-volume of a parallelepiped is the determinant of its edge vectors. The Jacobian can also be used to determine the stability of equilibria for systems of differential equations by approximating behavior near an equilibrium point.
The volume of this parallelepiped is the absolute value of the determinant of the 3-by-3 matrix formed by the vectors r 1, r 2, and r 3. The determinant det ( A ) of a square matrix A is a scalar that tells whether the associated map is an isomorphism or not: to be so it is sufficient and necessary that the determinant is nonzero. [ 47 ]
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .