Search results
Results from the WOW.Com Content Network
S foot of water per foot of pipe; P d = pressure drop over the length of pipe in psig (pounds per square inch gauge pressure) L = length of pipe in feet; Q = flow, gpm (gallons per minute) C = pipe roughness coefficient; d = inside pipe diameter, in (inches) Note: Caution with U S Customary Units is advised. The equation for head loss in pipes ...
In these kinds of measurements, the most practical instrument to use is the pitot tube. The pitot tube can be inserted through a small hole in the duct with the pitot connected to a U-tube water gauge or some other differential pressure gauge for determining the flow velocity inside the ducted wind tunnel. One use of this technique is to ...
For pipe flows a so-called transit time method is applied where a radiotracer is injected as a pulse into the measured flow. The transit time is defined with the help of radiation detectors placed on the outside of the pipe. The volume flow is obtained by multiplying the measured average fluid flow velocity by the inner pipe cross-section.
where is the density of the fluid, is the (slower) fluid velocity where the pipe is wider, and is the (faster) fluid velocity where the pipe is narrower (as seen in the figure). The static pressure at each position is measured using a small tube either outside and ending at the wall or into the pipe where the small tube is perpendicular to the ...
Figure (1) showing typical velocity flow profile for natural gas measurement. The most commonly used description of flow conditions within the pipe is the flow velocity profile. Fig.(1) shows the typical flow velocity profile for natural gas measurement. [4] The shape of the flow velocity profile is given by the following equation,
The no slip boundary condition at the pipe wall requires that u = 0 at r = R (radius of the pipe), which yields c 2 = GR 2 / 4μ . Thus we have finally the following parabolic velocity profile: = (). The maximum velocity occurs at the pipe centerline (r = 0), u max = GR 2 / 4μ .
Schematic view of a flow sensor. An ultrasonic flow meter is a type of flow meter that measures the velocity of a fluid with ultrasound to calculate volume flow. Using ultrasonic transducers, the flow meter can measure the average velocity along the path of an emitted beam of ultrasound, by averaging the difference in measured transit time between the pulses of ultrasound propagating into and ...
In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.