enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Liouville's theorem (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    This might seem to be a much stronger result than Liouville's theorem, but it is actually an easy corollary. If the image of f {\displaystyle f} is not dense, then there is a complex number w {\displaystyle w} and a real number r > 0 {\displaystyle r>0} such that the open disk centered at w {\displaystyle w} with radius r {\displaystyle r} has ...

  3. Liouville's theorem (Hamiltonian) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.

  4. Liouville's theorem (differential algebra) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    Thus, on an intuitive level, the theorem states that the only elementary antiderivatives are the "simple" functions plus a finite number of logarithms of "simple" functions. A proof of Liouville's theorem can be found in section 12.4 of Geddes, et al. [4] See Lützen's scientific bibliography for a sketch of Liouville's original proof [5 ...

  5. Liouville number - Wikipedia

    en.wikipedia.org/wiki/Liouville_number

    A Liouville number is irrational but does not have this property, so it cannot be algebraic and must be transcendental. The following lemma is usually known as Liouville's theorem (on diophantine approximation), there being several results known as Liouville's theorem.

  6. Liouville–Arnold theorem - Wikipedia

    en.wikipedia.org/wiki/Liouville–Arnold_theorem

    In dynamical systems theory, the Liouville–Arnold theorem states that if, in a Hamiltonian dynamical system with n degrees of freedom, there are also n independent, Poisson commuting first integrals of motion, and the level sets of all first integrals are compact, then there exists a canonical transformation to action-angle coordinates in which the transformed Hamiltonian is dependent only ...

  7. Liouville's theorem (conformal mappings) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    In mathematics, Liouville's theorem, proved by Joseph Liouville in 1850, [1] is a rigidity theorem about conformal mappings in Euclidean space.It states that every smooth conformal mapping on a domain of R n, where n > 2, can be expressed as a composition of translations, similarities, orthogonal transformations and inversions: they are Möbius transformations (in n dimensions).

  8. Liouville's theorem - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem

    Liouville's theorem has various meanings, all mathematical results named after Joseph Liouville: In complex analysis, see Liouville's theorem (complex analysis) There is also a related theorem on harmonic functions

  9. Hamiltonian optics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_optics

    Liouville’s theorem is essentially statistical in nature, and it refers to the evolution in time of an ensemble of mechanical systems of identical properties but with different initial conditions. Each system is represented by a single point in phase space, and the theorem states that the average density of points in phase space is constant ...