Search results
Results from the WOW.Com Content Network
Epithelial–mesenchymal transition was first recognized as a feature of embryogenesis by Betty Hay in the 1980s. [ 1 ] [ 2 ] EMT, and its reverse process, MET ( mesenchymal-epithelial transition ) are critical for development of many tissues and organs in the developing embryo, and numerous embryonic events such as gastrulation , neural crest ...
Unlike epithelial cells – which are stationary and characterized by an apico-basal polarity with binding by a basal lamina, tight junctions, gap junctions, adherent junctions and expression of cell-cell adhesion markers such as E-cadherin, [4] mesenchymal cells do not make mature cell-cell contacts, can invade through the extracellular matrix, and express markers such as vimentin ...
Together with TGF-β, an important role of β-catenin is to induce a morphogenic change in epithelial cells. It induces them to abandon their tight adhesion and assume a more mobile and loosely associated mesenchymal phenotype. During this process, epithelial cells lose expression of proteins like E-cadherin, Zonula occludens 1 (ZO1), and ...
Epithelial–mesenchymal transition is a morphogenetic process, normally occurs in embryogenesis that is "hijacked" by cancer stem cells by detaching from their primary place and migrating to another one. The dissemination is followed by reverse transition so-called Epithelial-Mesenchymal Transition (EMT).
This transition occurs through the loss of epithelial cadherin, tight junctions, and adherens junctions on the cell membranes of epithelial cells. [9] The surface molecules undergo endocytosis and the microtubule cytoskeleton loses shape, enabling mesenchyme to migrate along the extracellular matrix (ECM).
Epithelial to mesenchymal transdifferentiation of an epithelial cell. Perhaps the most studied pathway of myofibroblast formation is TGF-beta1 dependent differentiation from fibroblast cells. Activation of the TGF-beta receptor 1 and TGF-beta receptor 2 leads to induction of the canonical SMAD2 / SMAD3 pathway. [ 3 ]
Currently, three main theories have been proposed to explain the metastatic pathway of cancer: the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) hypothesis (1), the cancer stem cell hypothesis (2), and the macrophage–cancer cell fusion hybrid hypothesis (3).
EMT was found to be rarely equally pronounced throughout the entire tumor tissue. More likely, this process is characterized by a varying intensity of the transition of cells from the epithelial to the mesenchymal phenotype. In this regard, the "partial EMT" can be described, in which most cells in the invasive front are involved. Partial EMT ...