Search results
Results from the WOW.Com Content Network
The human mitochondrial genome is the entirety of hereditary information contained in human mitochondria. Mitochondria are small structures in cells that generate energy for the cell to use, and are hence referred to as the "powerhouses" of the cell. Mitochondrial DNA (mtDNA) is not transmitted through nuclear DNA (nDNA). In humans, as in most ...
Human mitochondrial DNA was the first significant part of the human genome to be sequenced. [4] This sequencing revealed that human mtDNA has 16,569 base pairs and encodes 13 proteins. As in other vertebrates, the human mitochondrial genetic code differs slightly from nuclear DNA. [5]
In human mitochondrial genetics, L is the mitochondrial DNA macro-haplogroup that is at the root of the anatomically modern human (Homo sapiens) mtDNA phylogenetic tree. As such, it represents the most ancestral mitochondrial lineage of all currently living modern humans, also dubbed "Mitochondrial Eve". Its two sub-clades are L1-6 and L0.
[1] (a) Pie charts on the map. (b) Counts of haplogroups in table format. For populations details, see 1000 Genomes Project#Human genome samples. In human genetics, a human mitochondrial DNA haplogroup is a haplogroup defined by differences in human mitochondrial DNA. Haplogroups are used to represent the major branch points on the ...
The near-absence of genetic recombination in mitochondrial DNA makes it a useful source of information for studying population genetics and evolutionary biology. [152] Because all the mitochondrial DNA is inherited as a single unit, or haplotype, the relationships between mitochondrial DNA from different individuals can be represented as a gene ...
[1] At birth, all copies of mitochondrial DNA are thought to be identical in most humans. [2] Microheteroplasmy is mutations of up to about 2−5% of mitochondrial genomes, and is present in most adults. This refers to hundreds of independent mutations in one organism, with each mutation found in about 1–2% of all mitochondrial genomes. [3]
Mitochondrial biogenesis is the process by which cells increase mitochondrial numbers. [1] [2] It was first described by John Holloszy in the 1960s, when it was discovered that physical endurance training induced higher mitochondrial content levels, leading to greater glucose uptake by muscles. [3]
Mitochondria are key regulators of cell survival and death. [10] The most recent report about a possible link between Alzheimer's disease (AD) and mtDNA genotypes might show evidence for subhaplogroup H5 as a risk factor for late onset AD.