Search results
Results from the WOW.Com Content Network
The only mechanism the human body has to cool itself is by sweat evaporation. [5] Sweating occurs when the ambient air temperature is above 35 °C (95 °F) [dubious – discuss] and the body fails to return to the normal internal temperature. [18] The evaporation of the sweat helps cool the blood beneath the skin.
Simplified control circuit of human thermoregulation. [8]The core temperature of a human is regulated and stabilized primarily by the hypothalamus, a region of the brain linking the endocrine system to the nervous system, [9] and more specifically by the anterior hypothalamic nucleus and the adjacent preoptic area regions of the hypothalamus.
Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are ...
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy. The nonequilibrium thermodynamic state of living ...
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.
Core temperature, also called core body temperature, is the operating temperature of an organism, specifically in deep structures of the body such as the liver, in comparison to temperatures of peripheral tissues. Core temperature is normally maintained within a narrow range so that essential enzymatic reactions can occur.
Formerly, the magnitude of the kelvin was defined in thermodynamic terms, but nowadays, as mentioned above, it is defined in terms of kinetic theory. The thermodynamic temperature is said to be absolute for two reasons. One is that its formal character is independent of the properties of particular materials.
A thermodynamic system is a macroscopic object, the microscopic details of which are not explicitly considered in its thermodynamic description. The number of state variables required to specify the thermodynamic state depends on the system, and is not always known in advance of experiment; it is usually found from experimental evidence.