enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    That is, denoting each complex number by the real matrix of the linear transformation on the Argand diagram (viewed as the real vector space ), affected by complex -multiplication on . Thus, an m × n {\displaystyle m\times n} matrix of complex numbers could be well represented by a 2 m × 2 n {\displaystyle 2m\times 2n} matrix of real numbers.

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    under which addition and multiplication of complex numbers and matrices correspond to each other. For example, 2-by-2 rotation matrices represent the multiplication with some complex number of absolute value 1, as above. A similar interpretation is possible for quaternions [77] and Clifford algebras in general.

  4. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Specifically, the singular value decomposition of an complex matrix ⁠ ⁠ is a factorization of the form =, where ⁠ ⁠ is an ⁠ ⁠ complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, ⁠ ⁠ is an complex unitary matrix, and is the conjugate transpose of ⁠ ⁠. Such decomposition ...

  5. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  6. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j: = ¯

  7. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    Over the real or complex numbers, continuity implies that adj(A) commutes with B even when A is not invertible. Finally, there is a more general proof than the second proof, which only requires that an n × n matrix has entries over a field with at least 2n + 1 elements (e.g. a 5 × 5 matrix over the integers modulo 11).

  8. Split-complex number - Wikipedia

    en.wikipedia.org/wiki/Split-complex_number

    The split-complex number = + can be represented by the matrix (). Addition and multiplication of split-complex numbers are then given by matrix addition and multiplication. The squared modulus of z is given by the determinant of the corresponding matrix.

  9. Symplectic matrix - Wikipedia

    en.wikipedia.org/wiki/Symplectic_matrix

    where denotes the transpose of and is a fixed nonsingular, skew-symmetric matrix.This definition can be extended to matrices with entries in other fields, such as the complex numbers, finite fields, p-adic numbers, and function fields.