enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Key derivation function - Wikipedia

    en.wikipedia.org/wiki/Key_derivation_function

    Example of a Key Derivation Function chain as used in the Signal Protocol.The output of one KDF function is the input to the next KDF function in the chain. In cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a ...

  3. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    A probability distribution is not uniquely determined by the moments E[X n] = e nμ + ⁠ 1 / 2 ⁠ n 2 σ 2 for n ≥ 1. That is, there exist other distributions with the same set of moments. [4] In fact, there is a whole family of distributions with the same moments as the log-normal distribution. [citation needed]

  4. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    Such complex logarithm functions are analogous to the real logarithm function: >, which is the inverse of the real exponential function and hence satisfies e ln x = x for all positive real numbers x. Complex logarithm functions can be constructed by explicit formulas involving real-valued functions, by integration of 1 / z {\displaystyle 1/z ...

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    As an integral, ln(t) equals the area between the x-axis and the graph of the function 1/x, ranging from x = 1 to x = t. This is a consequence of the fundamental theorem of calculus and the fact that the derivative of ln(x) is 1/x. Product and power logarithm formulas can be derived from this definition. [41]

  6. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    Many properties of the real logarithm also apply to the logarithmic derivative, even when the function does not take values in the positive reals. For example, since the logarithm of a product is the sum of the logarithms of the factors, we have (⁡) ′ = (⁡ + ⁡) ′ = (⁡) ′ + (⁡) ′.

  7. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions.

  8. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    As x goes to infinity, ψ(x) gets arbitrarily close to both ln(x − ⁠ 1 / 2 ⁠) and ln x. Going down from x + 1 to x , ψ decreases by ⁠ 1 / x ⁠ , ln( x − ⁠ 1 / 2 ⁠ ) decreases by ln( x + ⁠ 1 / 2 ⁠ ) / ( x − ⁠ 1 / 2 ⁠ ) , which is more than ⁠ 1 / x ⁠ , and ln x decreases by ln(1 + ⁠ 1 / x ⁠ ) , which is less than ...

  9. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.