Search results
Results from the WOW.Com Content Network
The ratio of width to height of standard-definition television. In mathematics, a ratio (/ ˈ r eɪ ʃ (i) oʊ /) shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3).
In mathematics, the supersilver ratio is a geometrical proportion close to 75/34. Its true value is the real solution of the equation x 3 = 2 x 2 + 1. The name supersilver ratio results from analogy with the silver ratio , the positive solution of the equation x 2 = 2 x + 1 , and the supergolden ratio .
The American Invitational Mathematics Examination (AIME) is a selective and prestigious 15-question 3-hour test given since 1983 to those who rank in the top 5% on the AMC 12 high school mathematics examination (formerly known as the AHSME), and starting in 2010, those who rank in the top 2.5% on the AMC 10.
The Riemann Hypothesis. Today’s mathematicians would probably agree that the Riemann Hypothesis is the most significant open problem in all of math. It’s one of the seven Millennium Prize ...
Most adults with dyscalculia have a hard time processing math at a 4th-grade level. For 1st–4th grade level, many adults will know what to do for the math problem, but they will often get them wrong because of "careless errors", although they are not careless when it comes to the problem.
In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio. The ratio is called coefficient of proportionality (or proportionality constant) and its reciprocal is known as constant of normalization (or normalizing constant).
In mathematics, two non-zero real numbers a and b are said to be commensurable if their ratio a / b is a rational number; otherwise a and b are called incommensurable. (Recall that a rational number is one that is equivalent to the ratio of two integers.) There is a more general notion of commensurability in group theory.
The content ranges from extremely difficult algebra and pre-calculus problems to problems in branches of mathematics not conventionally covered in secondary or high school and often not at university level either, such as projective and complex geometry, functional equations, combinatorics, and well-grounded number theory, of which extensive knowledge of theorems is required.