enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The logarithm log b x can be computed from the logarithms of x and b with respect to an arbitrary base k using the following formula: [nb 2] ⁡ = ⁡ ⁡. Typical scientific calculators calculate the logarithms to bases 10 and e . [ 5 ]

  3. Logarithmic scale - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_scale

    Logarithmic scale. A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences between the magnitudes of the numbers involved. Unlike a linear scale where each unit of distance corresponds to the same increment, on a logarithmic scale each ...

  4. Decade (log scale) - Wikipedia

    en.wikipedia.org/wiki/Decade_(log_scale)

    Decade (log scale) Appearance. Four powers of 10 spanning a range of three decades: 1, 10, 100, 1000 (10 0, 10 1, 10 2, 10 3) Four grids spanning three decades of resolution: One thousand 0.001s, one-hundred 0.01s, ten 0.1s, one 1. One decade (symbol dec[ 1 ]) is a unit for measuring ratios on a logarithmic scale, with one decade corresponding ...

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln (r) is the standard natural logarithm of the real number r. Arg (z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg (x + iy) = atan2 (y, x). Log (z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  6. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    A graph of logarithmic growth. In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential ...

  7. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of e itself, ln e, is 1, because e1 = e, while the natural logarithm of 1 is 0, since e0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a[4] (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many ...

  8. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    Common logarithm. A graph of the common logarithm of numbers from 0.1 to 100. In mathematics, the common logarithm is the logarithm with base 10. [1] It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered its use, as well as ...

  9. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    A loglog plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).