Search results
Results from the WOW.Com Content Network
The total harmonic distortion (THD or THDi) is a measurement of the harmonic distortion present in a signal and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency. Distortion factor, a closely related term, is sometimes used as a synonym.
Harmonic distortion is equivalent to adding harmonics to a signal. When a purely sinusoidal signal is in this way, a series of harmonics is superimposed on the original signal, and can be detected with suitable equipment. If the input is = The normalized output is
Total harmonic distortion, or THD is a common measurement of the level of harmonic distortion present in power systems. THD can be related to either current harmonics or voltage harmonics, and it is defined as the ratio of the RMS value of all harmonics to the RMS value of the fundamental component times 100%; the DC component is neglected.
In signal processing, distortion is the alteration of the original shape (or other characteristic) of a signal.In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signal representing sound or a video signal representing images, in an electronic device or communication channel.
A total harmonic distortion analyzer calculates the total harmonic content of a sinewave with some distortion, expressed as total harmonic distortion (THD). A typical application is to determine the THD of an amplifier by using a very-low-distortion sinewave input and examining the output.
IEC 61000-3-2 Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions (equipment input current ≤ 16 A per phase) is an international standard that limits mains voltage distortion by prescribing the maximum value for harmonic currents from the second harmonic up to and including the 40th harmonic current.
Electric power quality is the degree to which the voltage, frequency, and waveform of a power supply system conform to established specifications. Good power quality can be defined as a steady supply voltage that stays within the prescribed range, steady AC frequency close to the rated value, and smooth voltage curve waveform (which resembles a sine wave).
X-parameters are a generalization of S-parameters and are used for characterizing the amplitudes and relative phase of harmonics generated by nonlinear components under large input power levels. X-parameters are also referred to as the parameters of the Poly-Harmonic Distortion (PHD) nonlinear behavioral model.