enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knot theory - Wikipedia

    en.wikipedia.org/wiki/Knot_theory

    For example, a common method of describing a knot is a planar diagram called a knot diagram, in which any knot can be drawn in many different ways. Therefore, a fundamental problem in knot theory is determining when two descriptions represent the same knot. A complete algorithmic solution to this problem exists, which has unknown complexity. [1]

  3. Open and closed maps - Wikipedia

    en.wikipedia.org/wiki/Open_and_closed_maps

    In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.

  4. Open problem - Wikipedia

    en.wikipedia.org/wiki/Open_problem

    [2] [3] An important open mathematics problem solved in the early 21st century is the Poincaré conjecture. Open problems exist in all scientific fields. For example, one of the most important open problems in biochemistry is the protein structure prediction problem [4] [5] – how to predict a protein's structure from its sequence.

  5. Topology - Wikipedia

    en.wikipedia.org/wiki/Topology

    A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...

  6. Topological graph - Wikipedia

    en.wikipedia.org/wiki/Topological_graph

    A graph with odd-crossing number 13 and pair-crossing number 15 [1]. In mathematics, a topological graph is a representation of a graph in the plane, where the vertices of the graph are represented by distinct points and the edges by Jordan arcs (connected pieces of Jordan curves) joining the corresponding pairs of points.

  7. Topological graph theory - Wikipedia

    en.wikipedia.org/wiki/Topological_graph_theory

    A basic embedding problem often presented as a mathematical puzzle is the three utilities problem. Other applications can be found in printing electronic circuits where the aim is to print (embed) a circuit (the graph) on a circuit board (the surface) without two connections crossing each other and resulting in a short circuit .

  8. Kuratowski's closure-complement problem - Wikipedia

    en.wikipedia.org/wiki/Kuratowski's_closure...

    In point-set topology, Kuratowski's closure-complement problem asks for the largest number of distinct sets obtainable by repeatedly applying the set operations of closure and complement to a given starting subset of a topological space. The answer is 14. This result was first published by Kazimierz Kuratowski in 1922. [1]

  9. Topological data analysis - Wikipedia

    en.wikipedia.org/wiki/Topological_data_analysis

    Category theory is the language of modern algebra, and has been widely used in the study of algebraic geometry and topology. It has been noted that "the key observation of [10] is that the persistence diagram produced by [8] depends only on the algebraic structure carried by this diagram."