Search results
Results from the WOW.Com Content Network
Then A[I] is equivalent to an array of the first 10 elements of A. A practical example of this is a sorting operation such as: I = array_sort(A); % Obtain a list of sort indices B = A[I]; % B is the sorted version of A C = A[array_sort(A)]; % Same as above but more concise.
This can be accomplished as a special case of #Find, with a string of one character; but it may be simpler or more efficient in many languages to locate just one character. Also, in many languages, characters and strings are different types, so it is convenient to have such a function.
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
The primary facility for accessing the values of the elements of an array is the array subscript operator. To access the i-indexed element of array, the syntax would be array[i], which refers to the value stored in that array element. Array subscript numbering begins at 0 (see Zero-based indexing). The largest allowed array subscript is ...
A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet Σ. Σ may be a human language alphabet, for example, the letters A through Z and other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = {A,C,G,T}) in bioinformatics.
A list containing a single element is, by definition, sorted. Repeatedly merge sublists to create a new sorted sublist until the single list contains all elements. The single list is the sorted list. The merge algorithm is used repeatedly in the merge sort algorithm. An example merge sort is given in the illustration.
Find variable reference (placeholder), replace it by its variable value. This algorithm offers no cache strategy. Split and join string: splitting the string into an array, merging it with the corresponding array of values, then joining items by concatenation. The split string can be cached for reuse.
The basis behind array programming and thinking is to find and exploit the properties of data where individual elements are similar or adjacent. Unlike object orientation which implicitly breaks down data to its constituent parts (or scalar quantities), array orientation looks to group data and apply a uniform handling.