enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    A precision-recall curve plots precision as a function of recall; usually precision will decrease as the recall increases. Alternatively, values for one measure can be compared for a fixed level at the other measure (e.g. precision at a recall level of 0.75) or both are combined into a single measure.

  3. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  4. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    An F-score is a combination of the precision and the recall, providing a single score. There is a one-parameter family of statistics, with parameter β, which determines the relative weights of precision and recall. The traditional or balanced F-score is the harmonic mean of precision and recall:

  5. P4-metric - Wikipedia

    en.wikipedia.org/wiki/P4-metric

    It is calculated from precision, recall, specificity and NPV (negative predictive value). P 4 is designed in similar way to F 1 metric , however addressing the criticisms leveled against F 1 . It may be perceived as its extension.

  6. File:Precision and recall.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Precision_and_recall.pdf

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  7. Accuracy paradox - Wikipedia

    en.wikipedia.org/wiki/Accuracy_paradox

    Even though the accuracy is ⁠ 10 + 999000 / 1000000 ⁠ ≈ 99.9%, 990 out of the 1000 positive predictions are incorrect. The precision of ⁠ 10 / 10 + 990 ⁠ = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = ⁠ 2 × 0.01 × 1 / 0.01 + 1 ⁠ ≈ 2% (the recall being ⁠ 10 + 0 / 10 ...

  8. 'Real Housewives of Potomac's' Karen Huger found guilty of ...

    www.aol.com/news/real-housewives-potomacs-karen...

    A Maryland jury finds 'Real Housewives of Potomac' star Karen Huger guilty of driving under the influence and several other charges after she was arrested earlier this year.

  9. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    In information retrieval, the positive predictive value is called precision, and sensitivity is called recall. Unlike the Specificity vs Sensitivity tradeoff, these measures are both independent of the number of true negatives, which is generally unknown and much larger than the actual numbers of relevant and retrieved documents.