enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data cleansing - Wikipedia

    en.wikipedia.org/wiki/Data_cleansing

    Set-Membership constraints: The values for a column come from a set of discrete values or codes. For example, a person's sex may be Female, Male or Non-Binary. Foreign-key constraints: This is the more general case of set membership. The set of values in a column is defined in a column of another table that contains unique values.

  3. Missing data - Wikipedia

    en.wikipedia.org/wiki/Missing_data

    Generally speaking, there are three main approaches to handle missing data: (1) Imputation—where values are filled in the place of missing data, (2) omission—where samples with invalid data are discarded from further analysis and (3) analysis—by directly applying methods unaffected by the missing values. One systematic review addressing ...

  4. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  5. Imputation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Imputation_(statistics)

    Because missing data can create problems for analyzing data, imputation is seen as a way to avoid pitfalls involved with listwise deletion of cases that have missing values. That is to say, when one or more values are missing for a case, most statistical packages default to discarding any case that has a missing value, which may introduce bias ...

  6. Winsorizing - Wikipedia

    en.wikipedia.org/wiki/Winsorizing

    The distribution of many statistics can be heavily influenced by outliers, values that are 'way outside' the bulk of the data. A typical strategy to account for, without eliminating altogether, these outlier values is to 'reset' outliers to a specified percentile (or an upper and lower percentile) of the data. For example, a 90% winsorization ...

  7. Data editing - Wikipedia

    en.wikipedia.org/wiki/Data_editing

    Data editing is defined as the process involving the review and adjustment of collected survey data. [1] Data editing helps define guidelines that will reduce potential bias and ensure consistent estimates leading to a clear analysis of the data set by correct inconsistent data using the methods later in this article. [2]

  8. Noisy data - Wikipedia

    en.wikipedia.org/wiki/Noisy_data

    If actual outliers are not removed from the data set, they corrupt the results to a small or large degree depending on circumstances. If valid data is identified as an outlier and is mistakenly removed, that also corrupts results. Fraud: Individuals may deliberately skew data to influence the results toward a desired conclusion.

  9. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...