Search results
Results from the WOW.Com Content Network
Cell sorting is the process through which a particular cell type is separated from others contained in a sample on the basis of its physical or biological properties, such as size, morphological parameters, viability and both extracellular and intracellular protein expression.
Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. [1] This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to ...
Biological processes are regulated by many means; examples include the control of gene expression, protein modification or interaction with a protein or substrate molecule. Homeostasis: regulation of the internal environment to maintain a constant state; for example, sweating to reduce temperature
Protein targeting or protein sorting is the biological mechanism by which proteins are transported to their appropriate destinations within or outside the cell. [ 1 ] [ 2 ] [ note 1 ] Proteins can be targeted to the inner space of an organelle , different intracellular membranes , the plasma membrane , or to the exterior of the cell via secretion .
Defects encompass improper sorting of cargo into transport carriers, vesicle budding, issues in movement of vesicles along cytoskeletal tracks, and fusion at the target membrane. Since the life cycle of the cell is a highly regulated and important process, if any component goes awry there is the possibility for deleterious effects.
Cell synchronization is a process by which cells in a culture at different stages of the cell cycle are brought to the same phase. Cell synchrony is a vital process in the study of cells progressing through the cell cycle as it allows population-wide data to be collected rather than relying solely on single-cell experiments.
The most important feature of the SAS method is its potential for analyzing the inner structure of disordered systems, and frequently the application of this method is a unique way to obtain direct structural information on systems with random arrangement of density inhomogeneities in such large-scales.
An example would be the coagulation cascade of secondary hemostasis which leads to fibrin formation, and thus, the initiation of blood coagulation. Another example, sonic hedgehog signaling pathway , is one of the key regulators of embryonic development and is present in all bilaterians . [ 2 ]