enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    Extended real numbers (top) vs projectively extended real numbers (bottom). In mathematics, the extended real number system [a] is obtained from the real number system by adding two elements denoted + and [b] that are respectively greater and lower than every real number.

  3. Hyperoperation - Wikipedia

    en.wikipedia.org/wiki/Hyperoperation

    In mathematics, the hyperoperation sequence [nb 1] is an infinite sequence of arithmetic operations (called hyperoperations in this context) [1] [11] [13] that starts with a unary operation (the successor function with n = 0). The sequence continues with the binary operations of addition (n = 1), multiplication (n = 2), and exponentiation (n = 3).

  4. Projectively extended real line - Wikipedia

    en.wikipedia.org/wiki/Projectively_extended_real...

    The structure, however, is not a field, and none of the binary arithmetic operations are total – for example, 0 ⋅ ∞ is undefined, even though the reciprocal is total. [1] It has usable interpretations, however – for example, in geometry, the slope of a vertical line is ∞. [1]

  5. Surreal number - Wikipedia

    en.wikipedia.org/wiki/Surreal_number

    A visualization of the surreal number tree. In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number.

  6. Infinitesimal - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal

    Infinitesimals (ε) and infinities (ω) on the hyperreal number line (ε = 1/ω) In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is.

  7. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1]In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations.

  8. Calculator input methods - Wikipedia

    en.wikipedia.org/wiki/Calculator_input_methods

    On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [1] [2] [3] On an expression or formula calculator, one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.

  9. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    The computer may also offer facilities for splitting a product into a digit and carry without requiring the two operations of mod and div as in the example, and nearly all arithmetic units provide a carry flag which can be exploited in multiple-precision addition and subtraction. This sort of detail is the grist of machine-code programmers, and ...