Ads
related to: extrapolation math example problems pdf classteacherspayteachers.com has been visited by 100K+ users in the past month
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Assessment
Search results
Results from the WOW.Com Content Network
In mathematics, extrapolation is a type of estimation, beyond the original observation range, of the value of a variable on the basis of its relationship with another variable. It is similar to interpolation , which produces estimates between known observations, but extrapolation is subject to greater uncertainty and a higher risk of producing ...
An example of Richardson extrapolation method in two dimensions. In numerical analysis , Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A ∗ = lim h → 0 A ( h ) {\displaystyle A^{\ast }=\lim _{h\to 0}A(h)} .
The zeroeth extrapolation, R(n, 0), is equivalent to the trapezoidal rule with 2 n + 1 points; the first extrapolation, R(n, 1), is equivalent to Simpson's rule with 2 n + 1 points. The second extrapolation, R(n, 2), is equivalent to Boole's rule with 2 n + 1 points. The further extrapolations differ from Newton-Cotes formulas.
In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.
A well-known example of an extrapolation method is the Romberg integration for the numerical calculation of integrals. In general, let v {\displaystyle v} be a value that is to be determined numerically, in the case of this article, for example, the value of the solution function of an initial value problem at a given point.
In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...
Ads
related to: extrapolation math example problems pdf classteacherspayteachers.com has been visited by 100K+ users in the past month