enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plasma beta - Wikipedia

    en.wikipedia.org/wiki/Plasma_beta

    Plasma beta. The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = nkBT) to the magnetic pressure (pmag = B2 /2 μ0). The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs. In the fusion power field, plasma is often confined using strong magnets.

  3. Magnetosphere - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere

    Magnetosphere. A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1][2] It is created by a celestial body with an active interior dynamo.

  4. Curie's law - Wikipedia

    en.wikipedia.org/wiki/Curie's_law

    H {\displaystyle H} is the magnitude of the applied magnetic field (A/m), T {\displaystyle T} is absolute temperature (K), C {\displaystyle C} is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.

  5. Plasmasphere - Wikipedia

    en.wikipedia.org/wiki/Plasmasphere

    The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere. The outer boundary of the plasmasphere is known as the plasmapause, which is defined by an order of magnitude drop in plasma density. In 1963 American scientist Don Carpenter and Soviet ...

  6. Birkeland current - Wikipedia

    en.wikipedia.org/wiki/Birkeland_current

    A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...

  7. Curie–Weiss law - Wikipedia

    en.wikipedia.org/wiki/Curie–Weiss_law

    In magnetism, the Curie–Weiss law describes the magnetic susceptibility χ of a ferromagnet in the paramagnetic region above the Curie temperature: where C is a material-specific Curie constant, T is the absolute temperature, and TC is the Curie temperature, both measured in kelvin. The law predicts a singularity in the susceptibility at T = TC.

  8. Curie temperature - Wikipedia

    en.wikipedia.org/wiki/Curie_temperature

    In physics and materials science, the Curie temperature (T C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism is lost at a critical temperature. [1]

  9. Magnetic reconnection - Wikipedia

    en.wikipedia.org/wiki/Magnetic_reconnection

    Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.