enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    The drag equation may be derived to within a multiplicative constant by the method of dimensional analysis. If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid,

  3. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow; No inertial effects (zero Reynolds number) Spherical particles; Homogeneous (uniform in composition) material

  4. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    Parasitic drag is made up of multiple components including viscous pressure drag (form drag), and drag due to surface roughness (skin friction drag). Additionally, the presence of multiple bodies in relative proximity may incur so called interference drag , which is sometimes described as a component of parasitic drag.

  5. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  6. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    Blue line: drag force; red line: inertia force; black line: total force according to the Morison equation. Note that the inertia force is in front of the phase of the drag force: the flow velocity is a sine wave, while the local acceleration is a cosine wave as a function of time. In fluid dynamics the Morison equation is a semi-empirical ...

  7. D'Alembert's paradox - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_paradox

    First steps towards solving the paradox were made by Saint-Venant, who modelled viscous fluid friction. Saint-Venant states in 1847: [11] But one finds another result if, instead of an ideal fluid – object of the calculations of the geometers of the last century – one uses a real fluid, composed of a finite number of molecules and exerting in its state of motion unequal pressure forces or ...

  8. Epstein drag - Wikipedia

    en.wikipedia.org/wiki/Epstein_drag

    In fluid dynamics, Epstein drag is a theoretical result, for the drag force exerted on spheres in high Knudsen number flow (i.e., rarefied gas flow). [1] This may apply, for example, to sub-micron droplets in air, or to larger spherical objects moving in gases more rarefied than air at standard temperature and pressure.

  9. Cunningham correction factor - Wikipedia

    en.wikipedia.org/wiki/Cunningham_correction_factor

    The derivation of Stokes' law, which is used to calculate the drag force on small particles, assumes a no-slip condition which is no longer correct at high Knudsen numbers. The Cunningham slip correction factor allows predicting the drag force on a particle moving a fluid with Knudsen number between the continuum regime and free molecular flow.