enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  3. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The solution set for the equations xy = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]

  4. Harmonic polynomial - Wikipedia

    en.wikipedia.org/wiki/Harmonic_polynomial

    [1] [2] The harmonic polynomials form a subspace of the vector space of polynomials over the given field. In fact, they form a graded subspace. [3] For the real field (), the harmonic polynomials are important in mathematical physics. [4] [5] [6]

  5. Linear equation - Wikipedia

    en.wikipedia.org/wiki/Linear_equation

    Given two different points (x 1, y 1) and (x 2, y 2), there is exactly one line that passes through them. There are several ways to write a linear equation of this line. If x 1x 2, the slope of the line is . Thus, a point-slope form is [3]

  6. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    An example of a stationary point of inflection is the point (0, 0) on the graph of y = x 3. The tangent is the x-axis, which cuts the graph at this point. An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x 3 + ax, for any nonzero a. The tangent at the origin is the line y = ax, which cuts the graph at ...

  7. 3-dimensional matching - Wikipedia

    en.wikipedia.org/wiki/3-dimensional_matching

    3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).

  8. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    For solving the cubic equation x 3 + m 2 x = n where n > 0, Omar Khayyám constructed the parabola y = x 2 /m, the circle that has as a diameter the line segment [0, n/m 2] on the positive x-axis, and a vertical line through the point where the circle and the parabola intersect above the x-axis.

  9. Chromatic symmetric function - Wikipedia

    en.wikipedia.org/wiki/Chromatic_symmetric_function

    The chromatic symmetric function can also be defined for vertex-weighted graphs, [6] where it satisfies a deletion-contraction property analogous to that of the chromatic polynomial. If the theory of chromatic symmetric homology is generalized to vertex-weighted graphs as well, this deletion-contraction property lifts to a long exact sequence ...