enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  3. Elbow method (clustering) - Wikipedia

    en.wikipedia.org/wiki/Elbow_method_(clustering)

    In clustering, this means one should choose a number of clusters so that adding another cluster doesn't give much better modeling of the data. The intuition is that increasing the number of clusters will naturally improve the fit (explain more of the variation), since there are more parameters (more clusters) to use, but that at some point this ...

  4. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    The term "k-means" was first used by James MacQueen in 1967, [2] though the idea goes back to Hugo Steinhaus in 1956. [3]The standard algorithm was first proposed by Stuart Lloyd of Bell Labs in 1957 as a technique for pulse-code modulation, although it was not published as a journal article until 1982. [4]

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Variations of k-means often include such optimizations as choosing the best of multiple runs, but also restricting the centroids to members of the data set (k-medoids), choosing medians (k-medians clustering), choosing the initial centers less randomly (k-means++) or allowing a fuzzy cluster assignment (fuzzy c-means). Most k-means-type ...

  6. Degrees of freedom (statistics) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom...

    Then, at each of the n measured points, the weight of the original value on the linear combination that makes up the predicted value is just 1/k. Thus, the trace of the hat matrix is n/k. Thus the smooth costs n/k effective degrees of freedom. As another example, consider the existence of nearly duplicated observations.

  7. AOL Mail for Verizon Customers - AOL Help

    help.aol.com/products/aol-mail-verizon

    AOL Mail welcomes Verizon customers to our safe and delightful email experience!

  8. Chiefs clinch AFC's No. 1 playoff seed, home-field advantage ...

    www.aol.com/chiefs-clinch-afcs-no-1-205642665.html

    With a win over the Steelers, the Chiefs ensured the AFC playoffs will run through Arrowhead Stadium, as Kansas City clinched home-field advantage.

  9. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.